Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
1.
Exp Cell Res ; 438(1): 114038, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38614422

RESUMEN

Overconsumption of fructose is closely related to cancer. Ketohexokinase (KHK) catalyzes the conversion from fructose to fructose-1-phosphate (F1P), which is the first and committed step of fructose metabolism. Recently, aberrant KHK activation has been identified in multiple malignancies. However, the roles of KHK in gastric cancer (GC) cells are largely unclear. Herein, we reveal that the expression of ketohexokinase-A (KHK-A), one alternatively spliced KHK isoform that possesses low affinity for fructose, was markedly increased in GC cells. Depletion of endogenous KHK-A expression using lentiviruses encoding short hairpin RNAs (shRNAs) or pharmaceutical disruption of KHK-A activity using KHK-IN-1 hydrochloride in GC NCI-N87 and HGC-27 cells inhibited the proliferation in vitro and in vivo. Additionally, the mitochondrial respiration in the GC cells with KHK-A deficiency compared with the control cells was significantly impaired. One commercially-available antibody array was used to explore the effects of KHK-A knockdown on signaling pathways, showing that ß-catenin was remarkably reduced in the KHK-A deficient GC cells compared with the control ones. Pharmaceutical reduction in ß-catenin levels slowed down the proliferation of GC cells. These data uncover that KHK-A promotes the proliferation in GC cells, indicating that this enzyme might be a promising therapeutical target for GC treatment.


Asunto(s)
Proliferación Celular , Fructoquinasas , Neoplasias Gástricas , beta Catenina , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Neoplasias Gástricas/genética , Humanos , beta Catenina/metabolismo , beta Catenina/genética , Animales , Línea Celular Tumoral , Fructoquinasas/metabolismo , Fructoquinasas/genética , Ratones , Ratones Desnudos , Regulación Neoplásica de la Expresión Génica , Ratones Endogámicos BALB C
2.
Exp Mol Med ; 56(1): 220-234, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38200154

RESUMEN

Diabetes might be associated with increased cancer risk, with several studies reporting hyperglycemia as a primary oncogenic stimulant. Since glucose metabolism is linked to numerous metabolic pathways, it is difficult to specify the mechanisms underlying hyperglycemia-induced cancer progression. Here, we focused on the polyol pathway, which is dramatically activated under hyperglycemia and causes diabetic complications. We investigated whether polyol pathway-derived fructose facilitates hyperglycemia-induced gastric cancer metastasis. We performed bioinformatics analysis of gastric cancer datasets and immunohistochemical analyses of gastric cancer specimens, followed by transcriptomic and proteomic analyses to evaluate phenotypic changes in gastric cancer cells. Consequently, we found a clinical association between the polyol pathway and gastric cancer progression. In gastric cancer cell lines, hyperglycemia enhanced cell migration and invasion, cytoskeletal rearrangement, and epithelial-mesenchymal transition (EMT). The hyperglycemia-induced acquisition of metastatic potential was mediated by increased fructose derived from the polyol pathway, which stimulated the nuclear ketohexokinase-A (KHK-A) signaling pathway, thereby inducing EMT by repressing the CDH1 gene. In two different xenograft models of cancer metastasis, gastric cancers overexpressing AKR1B1 were found to be highly metastatic in diabetic mice, but these effects of AKR1B1 were attenuated by KHK-A knockdown. In conclusion, hyperglycemia induces fructose formation through the polyol pathway, which in turn stimulates the KHK-A signaling pathway, driving gastric cancer metastasis by inducing EMT. Thus, the polyol and KHK-A signaling pathways could be potential therapeutic targets to decrease the metastatic risk in gastric cancer patients with diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Hiperglucemia , Polímeros , Neoplasias Gástricas , Humanos , Animales , Ratones , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Proteómica , Transducción de Señal , Hiperglucemia/complicaciones , Fructoquinasas/genética , Fructoquinasas/metabolismo , Fructosa/metabolismo , Transición Epitelial-Mesenquimal/genética , Movimiento Celular/genética , Línea Celular Tumoral , Aldehído Reductasa/genética , Aldehído Reductasa/metabolismo , Aldehído Reductasa/farmacología
3.
Exp Mol Med ; 55(11): 2417-2432, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37907746

RESUMEN

Dementia, as an advanced diabetes-associated cognitive dysfunction (DACD), has become the second leading cause of death among diabetes patients. Given that little guidance is currently available to address the DACD process, it is imperative to understand the underlying mechanisms and screen out specific therapeutic targets. The excessive endogenous fructose produced under high glucose conditions can lead to metabolic syndrome and peripheral organ damage. Although generated by the brain, the role of endogenous fructose in the exacerbation of cognitive dysfunction is still unclear. Here, we performed a comprehensive study on leptin receptor-deficient T2DM mice and their littermate m/m mice and revealed that 24-week-old db/db mice had cognitive dysfunction and excessive endogenous fructose metabolism in the hippocampus by multiomics analysis and further experimental validation. We found that the rate-limiting enzyme of fructose metabolism, ketohexokinase, is primarily localized in microglia. It is upregulated in the hippocampus of db/db mice, which enhances mitochondrial damage and reactive oxygen species production by promoting nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) expression and mitochondrial translocation. Inhibiting fructose metabolism via ketohexokinase depletion reduces microglial activation, leading to the restoration of mitochondrial homeostasis, recovery of structural synaptic plasticity, improvement of CA1 pyramidal neuron electrophysiology and alleviation of cognitive dysfunction. Our findings demonstrated that enhanced endogenous fructose metabolism in microglia plays a dominant role in diabetes-associated cognitive dysfunction and could become a potential target for DACD.


Asunto(s)
Disfunción Cognitiva , Diabetes Mellitus , Humanos , Ratones , Animales , Microglía/metabolismo , Fructosa/metabolismo , Disfunción Cognitiva/etiología , Encéfalo/metabolismo , Fructoquinasas/genética , Fructoquinasas/metabolismo
4.
Metabolism ; 145: 155591, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37230214

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a liver manifestation of metabolic syndrome, and is estimated to affect one billion individuals worldwide. An increased intake of a high-fat diet (HFD) and sugar-sweetened beverages are risk-factors for NAFLD development, but how their combined intake promotes progression to a more severe form of liver injury is unknown. Here we show that fructose metabolism via ketohexokinase (KHK) C isoform leads to unresolved endoplasmic reticulum (ER) stress when coupled with a HFD intake. Conversely, a liver-specific knockdown of KHK in mice consuming fructose on a HFD is adequate to improve the NAFLD activity score and exert a profound effect on the hepatic transcriptome. Overexpression of KHK-C in cultured hepatocytes is sufficient to induce ER stress in fructose free media. Upregulation of KHK-C is also observed in mice with genetically induced obesity or metabolic dysfunction, whereas KHK knockdown in these mice improves metabolic function. Additionally, in over 100 inbred strains of male or female mice hepatic KHK expression correlates positively with adiposity, insulin resistance, and liver triglycerides. Similarly, in 241 human subjects and their controls, hepatic Khk expression is upregulated in early, but not late stages of NAFLD. In summary, we describe a novel role of KHK-C in triggering ER stress, which offers a mechanistic understanding of how the combined intake of fructose and a HFD propagates the development of metabolic complications.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Femenino , Humanos , Masculino , Ratones , Dieta Alta en Grasa/efectos adversos , Fructoquinasas/genética , Fructoquinasas/metabolismo , Fructosa/farmacología , Lipogénesis/fisiología , Hígado/metabolismo , Modelos Genéticos , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/metabolismo
6.
J Hepatol ; 79(1): 25-42, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36822479

RESUMEN

BACKGROUND & AIMS: The consumption of sugar and a high-fat diet (HFD) promotes the development of obesity and metabolic dysfunction. Despite their well-known synergy, the mechanisms by which sugar worsens the outcomes associated with a HFD are largely elusive. METHODS: Six-week-old, male, C57Bl/6 J mice were fed either chow or a HFD and were provided with regular, fructose- or glucose-sweetened water. Moreover, cultured AML12 hepatocytes were engineered to overexpress ketohexokinase-C (KHK-C) using a lentivirus vector, while CRISPR-Cas9 was used to knockdown CPT1α. The cell culture experiments were complemented with in vivo studies using mice with hepatic overexpression of KHK-C and in mice with liver-specific CPT1α knockout. We used comprehensive metabolomics, electron microscopy, mitochondrial substrate phenotyping, proteomics and acetylome analysis to investigate underlying mechanisms. RESULTS: Fructose supplementation in mice fed normal chow and fructose or glucose supplementation in mice fed a HFD increase KHK-C, an enzyme that catalyzes the first step of fructolysis. Elevated KHK-C is associated with an increase in lipogenic proteins, such as ACLY, without affecting their mRNA expression. An increase in KHK-C also correlates with acetylation of CPT1α at K508, and lower CPT1α protein in vivo. In vitro, KHK-C overexpression lowers CPT1α and increases triglyceride accumulation. The effects of KHK-C are, in part, replicated by a knockdown of CPT1α. An increase in KHK-C correlates negatively with CPT1α protein levels in mice fed sugar and a HFD, but also in genetically obese db/db and lipodystrophic FIRKO mice. Mechanistically, overexpression of KHK-C in vitro increases global protein acetylation and decreases levels of the major cytoplasmic deacetylase, SIRT2. CONCLUSIONS: KHK-C-induced acetylation is a novel mechanism by which dietary fructose augments lipogenesis and decreases fatty acid oxidation to promote the development of metabolic complications. IMPACT AND IMPLICATIONS: Fructose is a highly lipogenic nutrient whose negative consequences have been largely attributed to increased de novo lipogenesis. Herein, we show that fructose upregulates ketohexokinase, which in turn modifies global protein acetylation, including acetylation of CPT1a, to decrease fatty acid oxidation. Our findings broaden the impact of dietary sugar beyond its lipogenic role and have implications on drug development aimed at reducing the harmful effects attributed to sugar metabolism.


Asunto(s)
Carnitina O-Palmitoiltransferasa , Hígado , Masculino , Ratones , Animales , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Carnitina O-Palmitoiltransferasa/farmacología , Acetilación , Hígado/metabolismo , Obesidad/metabolismo , Glucosa/metabolismo , Dieta Alta en Grasa/efectos adversos , Ácidos Grasos/metabolismo , Fructosa/metabolismo , Fructoquinasas/genética , Fructoquinasas/metabolismo
7.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36430739

RESUMEN

Fructokinase (FRK) and fructokinase-like (FLN), belonging to the phosphofructokinase B type subfamily, share substantial sequence similarity, and are crucial in various plant physiological processes. However, there is limited information regarding what functionally differentiates plant FRKs from FLNs. Here, a total of three CsFRKs and two CsFLNs were identified from the cucumber genome. Their significant difference lay in the structure of their G/AXGD motif, which existed as GAGD in CsFRKs, but as G/ASGD in CsFLNs. Comparative phylogenetic analysis classified CsFRKs and CsFLNs into five sub-branches consistent with their quite different exon/intron organizations. Both transcriptome data and RT-qPCR analyses revealed that CsFRK3 was the most active gene, with the highest expression in the majority of tissues tested. Moreover, the expression levels of two putative plastidic genes, CsFRK1 and CsFLN2, were significantly positively associated with chlorophyll accumulation in the chlorophyll-reduced cucumber mutant. Briefly, both CsFRK and CsFLN genes were involved in the development of sink tissues, especially CsFRK3. CsFRK1 and CsFLN2 were recognized as candidates in the chlorophyll biosynthesis pathway of cucumber. These results would greatly assist in further investigation on functional characterization of FRKs and FLNs, especially in the development and chlorophyll biosynthesis of cucumber.


Asunto(s)
Cucumis sativus , Cucumis sativus/genética , Cucumis sativus/metabolismo , Filogenia , Fructoquinasas/genética , Fructoquinasas/metabolismo , Intrones , Clorofila/metabolismo
8.
Molecules ; 27(19)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36235158

RESUMEN

The control of the duration of the dormancy phase is a significant challenge in the potato industry and for seed producers. However, the proteome landscape involved in the regulation of the length of the dormancy period over potato cultivars remains largely unexplored. In this study, we performed for the first time a comparative proteome profiling of potato cultivars with differential duration of tuber dormancy. More specifically, the proteome profiling of Agata, Kennebec and Agria commercial potato varieties with short, medium and medium-long dormancy, respectively, was assessed at the endodormancy stage using high-resolution two-dimensional electrophoresis (2-DE) coupled to reversed-phase liquid chromatography-tandem mass spectrometry (LC-TripleTOF MS/MS). A total of 11 proteins/isoforms with statistically significant differential abundance among cultivars were detected on 2-DE gels and confidently identified by LC-TripleTOF MS/MS. Identified proteins have known functions related to tuber development, sprouting and the oxylipins biosynthesis pathway. Fructokinase, a mitochondrial ADP/ATP carrier, catalase isozyme 2 and heat shock 70 kDa were the proteins with the strongest response to dormancy variations. To the best of our knowledge, this study reports the first candidate proteins underlying variable dormancy length in potato cultivars.


Asunto(s)
Solanum tuberosum , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Catalasa/metabolismo , Fructoquinasas/análisis , Fructoquinasas/metabolismo , Isoenzimas/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/metabolismo , Tubérculos de la Planta/química , Proteoma/metabolismo , Proteómica/métodos , Solanum tuberosum/química , Espectrometría de Masas en Tándem
9.
Plant Sci ; 324: 111428, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36007631

RESUMEN

Low temperature is one of the main abiotic stresses that inhibit wheat growth and development. To understand the physiological mechanism of salt priming induced low temperature tolerance and its transgenerational effects, the chlorophyl b-deficient mutant (ANK) and its wild type (WT) wheat were subjected to low temperature stress after parental salt priming. Salt priming significantly decreased the levels of superoxide anions, hydrogen peroxide and malondialdehyde in both parental and offspring plants under low temperature. The catalase activity in parental wheat and activities of dehydroascorbate reductase and glutathione reductase in the offspring were significantly increased by salt priming under low temperature. Meanwhile, salt priming contributed to mantaining the integrity of chloroplast structure and relatively higher net photosynthetic rate (Pn) in both generations under low temperature. Salt priming also improved the carbohydrate metabolism enzyme activities of parental and offspring plants, such as phosphoglucomutase, fructokinase and sucrose synthase. In addition, ANK plants had significantly higher carbohydrate metabolism enzyme activities than WT plants. The differential expressed proteins (DEP) in seeds of two genotypes under salt priming were mainly related to homeostasis, electron transfer activity, photosynthesis and carbohydrate metabolism. Correlation network analysis showed that the expression of DEP under salt priming was significantly correlated to sucrose concentration and cytoplasmic peroxidase (POX) activity in WT, while that was correlated to various carbohydrate metabolism enzyme activities in ANK plants. These results indicated that the parental salt priming induced modulations of seed proteome regulated the ROS metabolism, photosynthetic carbon assimilation and carbohydrate metabolism, hence enhancing the low temperature tolerance in offspring wheat.


Asunto(s)
Germinación , Triticum , Antioxidantes/metabolismo , Carbono/metabolismo , Catalasa/metabolismo , Fructoquinasas/metabolismo , Glutatión Reductasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Malondialdehído/metabolismo , Fosfoglucomutasa/metabolismo , Fosfoglucomutasa/farmacología , Proteoma/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Semillas/metabolismo , Cloruro de Sodio/farmacología , Estrés Fisiológico , Sacarosa/metabolismo , Superóxidos/metabolismo , Temperatura , Triticum/metabolismo
10.
Appl Microbiol Biotechnol ; 106(11): 4251-4268, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35661910

RESUMEN

Rhizobium sp. RM solubilized tri-calcium phosphate (TCP: 324-463 µg ml-1) and rock phosphate (RP: 36-46.58 µg ml-1) in the presence of common rhizospheric sugars-glucose, arabinose, xylose and their combinations. Fructose, though did not support RP solubilization individually, surprisingly solubilized significantly higher phosphate when combined with aldoses. The highest TCP (644 µg ml-1) and RP (75 µg ml-1) solubilization was achieved in fructose + glucose combination. Presence of gluconate, malate and oxalate in culture supernatant indicated functioning of periplasmic glucose oxidation, the non-phosphorylative arabinose dehydrogenase pathway and the tricarboxylate (TCA) cycle, respectively. Aldoses, when present together, were co-utilized (monoauxic growth) however, when added with fructose, prevented the uptake of fructose yielding a typical diauxic growth. This presented an unusual sequential utilization of aldoses over a ketose (fructose) in strain RM. The prevention of fructose uptake by aldoses was investigated through real-time expression of key genes coding fructose transport proteins and initial enzymes of sugar metabolism. Fructose was actively transported via fructose-specific ABC transporters as suggested by upregulation of frcB and frcC only in fructose and fructose growth phases of fructose + aldose combinations. The probable route of initial fructose metabolism involved either fructokinase and/or xylose isomerase, as confirmed by enzyme activities. The upregulation of hfq and hprK genes only in aldose phase of fructose + aldose combinations suggested their possible involvement in governing the preferential utilization. The novel aspects of this study are enhanced organic acid mediated P solubilization in fructose + aldose combinations and a rare hierarchy of aldoses over fructose which is possibly regulated at the level of fructose transport and fructokinase. KEY POINTS: • Sugars when provided in different dual combinations, supported enhanced P solubilization from complex phosphate sources like TCP and RP in Rhizobium sp. RM. • Transcriptional status of genes in cells of RM when grown in different individual sugars and their combinations suggested that fructose might be a less preferred carbon source and hence was utilized after aldoses with the possible regulation by Hfq and HPrK. • First study to present a unique phenomenon of sequential utilization of aldoses (glucose, arabinose and xylose) over fructose in a concentration-independent manner in Rhizobium sp. RM. and to present the effect of dual combinations of sugars on organic acid mediated P solubilization trait of rhizobia.


Asunto(s)
Rhizobium , Arabinosa/metabolismo , Fructoquinasas/metabolismo , Fructosa/metabolismo , Glucosa/metabolismo , Compuestos Orgánicos/metabolismo , Fosfatos/metabolismo , Rhizobium/genética , Xilosa/metabolismo
11.
Clin Pharmacol Ther ; 112(3): 605-614, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35355249

RESUMEN

PF-06835919 is a first-in-class ketohexokinase inhibitor (KHKi), recently under development for the treatment of metabolic and fatty liver diseases, which inhibited organic anion transporting polypeptide (OATP)1B1 in vitro and presented drug-drug interaction (DDI) risk. This study aims to investigate the dose-dependent effect of KHKi on OATP1B in vivo activity. We performed an open-label study comparing pharmacokinetics of atorvastatin (OATP1B probe) dosed alone (20 mg single dose) and coadministered with two dose strengths of KHKi (50 and 280 mg once daily) in 12 healthy participants. Additionally, changes in exposure of coproporphyrin-I (CP-I), an endogenous biomarker for OATP1B, were assessed in the atorvastatin study (1.12-fold and 1.49-fold increase in area under the plasma concentration-time profile (AUC) with once-daily 50 and 280 mg, respectively), and a separate single oral dose study of KHKi alone (100-600 mg, n = 6 healthy participants; up to a 1.80-fold increase in AUC). Geometric mean ratios (90% confidence interval) of atorvastatin AUC following 50 and 280 mg KHKi were 1.14 (1.00-1.30) and 1.54 (1.37-1.74), respectively. Physiologically-based pharmacokinetic modeling of CP-I plasma exposure following a single dose of KHKi predicted in vivo OATP1B inhibition from about 13% to 70% over the 100 to 600 mg dose range, while using the in vitro inhibition potency (1.9 µM). Model-based analysis correctly predicted "no-effect" (AUC ratio < 1.25) at the low dose range and "weak" effect (AUC ratio < 2) on atorvastatin pharmacokinetics at the high dose range of KHKi. This study exemplified the utility of biomarker-informed model-based approach in discerning even small effects on OATP1B activity in vivo, and to project DDI risk at the clinically relevant doses.


Asunto(s)
Fructoquinasas , Atorvastatina , Biomarcadores , Interacciones Farmacológicas , Fructoquinasas/metabolismo , Humanos , Transportador 1 de Anión Orgánico Específico del Hígado/metabolismo , Medición de Riesgo
12.
Cancer Lett ; 534: 215617, 2022 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-35257833

RESUMEN

Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide. Abundant metabolic fuels have been implicated as potential drivers of CRC. However, it remains unclear whether fructose, an ample sugar in daily diets, is essential for CRC growth. In the present study, we found that glucose levels were always insufficient in human CRC tissues. Compensating for this, fructose was flexibly utilized by tumor cells as an alternative energy source to maintain proliferation and exert chemotherapy resistance in vitro by upregulating GLUT5, a major fructose transporter encoded by SLC2A5. Mechanistically, in glucose-deprived but fructose-rich environments, GLUT5 could interact with ketohexokinase and inhibit its autophagy-dependent degradation, thus trapping fructose into glycolysis and tricarboxylic acid cycle for the malignant growth of CRC cells. In addition, reducing dietary fructose or pharmacological blockade of fructose utilization significantly reduced CRC growth and sensitized CRC cells to chemotherapy in vivo. Taken together, our findings highlight the role of elevated fructose utilization mediated by the GLUT5-KHK axis in governing CRC growth and imply that efforts to refine fructose intake or inhibit fructose-mediated actions may serve as potential therapeutic strategies.


Asunto(s)
Neoplasias Colorrectales , Fructoquinasas , Fructosa , Transportador de Glucosa de Tipo 5 , Proliferación Celular , Neoplasias Colorrectales/tratamiento farmacológico , Fructoquinasas/metabolismo , Fructosa/metabolismo , Glucosa , Transportador de Glucosa de Tipo 5/metabolismo , Humanos
13.
Hum Cell ; 35(2): 694-704, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35133629

RESUMEN

Non-small cell lung cancer (NSCLC) is the most common subtype of lung cancer with poor prognosis. This study designated to figure out the effects of Ubiquitin Specific Peptidase 36 (USP36) on NSCLC. Data of this study demonstrated that upregulation of USP36 was observed in NSCLC tissues and cell lines. Overexpression of USP36 promoted NSCLC cell proliferation and inhibited NSCLC cell apoptosis. Knockdown of USP36 decreased Ketohexokinase A (KHK-A) and increased KHK-C expression at both RNA and protein levels. Expression of c-MYC and hnRNPH1/H2 was positively correlated with the expression of USP36. Upregulation of c-MYC reversed the downregulation of hnRNPH1/H2 induced inhibition of USP36. Overexpression of hnRNPH1/H2 reversed the downregulation of KHK-A induced inhibition of USP36. Results of in vivo xenograft model were consistent with the findings of in vitro experiments. In summary, overexpression of USP36 in NSCLC accelerated tumor growth through upregulation of KHK-A, which was medicated by stabilizing c-MYC to increase hnRNPH1/H2 expression.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Fructoquinasas/metabolismo , Neoplasias Pulmonares , Ubiquitina Tiolesterasa , Apoptosis , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular/genética , Fructoquinasas/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/patología , MicroARNs/genética , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo
14.
Nature ; 597(7875): 263-267, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34408323

RESUMEN

Fructose consumption is linked to the rising incidence of obesity and cancer, which are two of the leading causes of morbidity and mortality globally1,2. Dietary fructose metabolism begins at the epithelium of the small intestine, where fructose is transported by glucose transporter type 5 (GLUT5; encoded by SLC2A5) and phosphorylated by ketohexokinase to form fructose 1-phosphate, which accumulates to high levels in the cell3,4. Although this pathway has been implicated in obesity and tumour promotion, the exact mechanism that drives these pathologies in the intestine remains unclear. Here we show that dietary fructose improves the survival of intestinal cells and increases intestinal villus length in several mouse models. The increase in villus length expands the surface area of the gut and increases nutrient absorption and adiposity in mice that are fed a high-fat diet. In hypoxic intestinal cells, fructose 1-phosphate inhibits the M2 isoform of pyruvate kinase to promote cell survival5-7. Genetic ablation of ketohexokinase or stimulation of pyruvate kinase prevents villus elongation and abolishes the nutrient absorption and tumour growth that are induced by feeding mice with high-fructose corn syrup. The ability of fructose to promote cell survival through an allosteric metabolite thus provides additional insights into the excess adiposity generated by a Western diet, and a compelling explanation for the promotion of tumour growth by high-fructose corn syrup.


Asunto(s)
Fructosa/farmacología , Jarabe de Maíz Alto en Fructosa/farmacología , Absorción Intestinal/efectos de los fármacos , Mucosa Intestinal/citología , Mucosa Intestinal/efectos de los fármacos , Nutrientes/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Activación Enzimática , Femenino , Fructoquinasas/metabolismo , Fructosa/metabolismo , Jarabe de Maíz Alto en Fructosa/metabolismo , Hipoxia/dietoterapia , Hipoxia/patología , Mucosa Intestinal/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones , Piruvato Quinasa/metabolismo
15.
STAR Protoc ; 2(3): 100731, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34409309

RESUMEN

Ketohexokinase (KHK) catalyzes the first step of fructose metabolism. Inhibitors of KHK enzymatic activity are being evaluated in clinical trials for the treatment of non-alcoholic fatty liver disease (NAFLD) and diabetes. Here, we present a luminescence-based protocol to quantify KHK activity. The accuracy of this technique has been validated using knockdown and overexpression of KHK in vivo and in vitro. The specificity of the assay has been verified using 3-O-methyl-D-fructose, a non-metabolizable analog of fructose, heat inactivation of hexokinases, and depletion of potassium. For complete details on the use of this protocol, please refer to Damen et al. (2021).


Asunto(s)
Pruebas de Enzimas/métodos , Fructoquinasas/metabolismo , Fructosa/metabolismo , Mediciones Luminiscentes/métodos , Animales , Metabolismo de los Hidratos de Carbono , Fructoquinasas/antagonistas & inhibidores , Hepatocitos/enzimología , Hepatocitos/metabolismo , Humanos , Luminiscencia , Ratones , Enfermedad del Hígado Graso no Alcohólico
16.
Cell Signal ; 86: 110082, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34252535

RESUMEN

Glomerular hypertrophy is a crucial factor of severe podocyte damage and proteinuria. Our previous study showed that high fructose induced podocyte injury. The current study aimed to explore a novel molecular mechanism underlying podocyte hypertrophy induced by high fructose. Here we demonstrated for the first time that high fructose significantly initiated the hypertrophy in rat glomeruli and differentiated human podocytes (HPCs). Consistently, it induced inflammatory response with the down-regulation of anti-inflammatory factor zinc-finger protein tristetraprolin (TTP) and the activation of interleukin-6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) signaling in these animal and cell models. Subsequently, high-expression of microRNA-92a-3p (miR-92a-3p) and its target protein cyclin-dependent kinase inhibitor p57 (P57) down-regulation, representing abnormal proliferation and apoptosis, were observed in vivo and in vitro. Moreover, high fructose increased ketohexokinase-A (KHK-A) expression in rat glomeruli and differentiated HPCs. Exogenous IL-6 stimulation up-regulated IL-6/STAT3 signaling and miR-92a-3p, reduced P57 expression and promoted podocyte proliferation, apoptosis and hypertrophy in vitro. The data from anti-inflammatory agent maslinic acid treatment or TTP siRNA transfection showed that high fructose may decrease TTP to activate IL-6/STAT3 signaling in podocyte overproliferation and apoptosis, causing podocyte hypertrophy. Whereas, KHK-A siRNA transfection remarkably restored high fructose-induced TTP down-regulation, IL-6/STAT3 signaling activation, podocyte overproliferation, apoptosis and hypertrophy in differentiated HPCs. Taken together, these results suggested that high fructose possibly increased KHK-A expression to down-regulate TTP, subsequently activated IL-6/STAT3 signaling to interfere with podocyte proliferation and apoptosis by up-regulating miR-92a-3p to suppress P57 expression, causing podocyte hypertrophy. Therefore, the inactivation of IL-6/STAT3 to relieve podocyte hypertrophy mediated by inhibiting KHK-A to increase TTP may be a novel strategy for high fructose diet-associated podocyte injury and proteinuria.


Asunto(s)
MicroARNs , Podocitos , Animales , Regulación hacia Abajo , Fructoquinasas/genética , Fructoquinasas/metabolismo , Fructosa/metabolismo , Hipertrofia/metabolismo , Interleucina-6/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Podocitos/metabolismo , Ratas , Factor de Transcripción STAT3/metabolismo , Tristetraprolina/genética , Tristetraprolina/metabolismo
17.
Int J Mol Sci ; 22(9)2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-34064462

RESUMEN

MicroRNAs (miRNAs) are regulators of the post-transcription stage of gene activity documented to play central roles in flower and fruit development in model plant species. However, little is known about their roles and differences in domesticated and wild Capsicum species. In this study, we used high-throughput sequencing to analyze the miRNA content at three developmental stages (flower, small fruit, and middle fruit) from two cultivated (C. baccatum and C. annuum) and two wild (C. chacoense and C. eximium) pepper species. This analysis revealed 22 known and 27 novel miRNAs differentially expressed across species and tissues. A number of stage- and species-specific miRNAs were identified, and Gene Ontology terms were assigned to 138 genes targeted by the miRNAs. Most Gene Ontology terms were for the categories "genetic information processing", "signaling and cellular processes", "amino acid metabolism", and "carbohydrate metabolism". Enriched KEGG analysis revealed the pathways amino acids, sugar and nucleotide metabolism, starch and sucrose metabolism, and fructose-mannose metabolism among the principal ones regulated by miRNAs during pepper fruit ripening. We predicted miRNA-target gene interactions regulating flowering time and fruit development, including miR156/157 with SPL genes, miR159 with GaMYB proteins, miR160 with ARF genes, miR172 with AP2-like transcription factors, and miR408 with CLAVATA1 gene across the different Capsicum species. In addition, novel miRNAs play an important role in regulating interactions potentially controlling plant pathogen defense and fruit quality via fructokinase, alpha-L-arabinofuranosidase, and aromatic and neutral amino acid transporter. Overall, the small RNA-sequencing results from this study represent valuable information that provides a solid foundation for uncovering the miRNA-mediated mechanisms of flower and fruit development between domesticated and wild Capsicum species.


Asunto(s)
Capsicum/genética , Flores/genética , Frutas/genética , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Proteínas de Plantas/genética , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Capsicum/clasificación , Capsicum/crecimiento & desarrollo , Capsicum/metabolismo , Domesticación , Flores/crecimiento & desarrollo , Flores/metabolismo , Fructoquinasas/genética , Fructoquinasas/metabolismo , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Ontología de Genes , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Redes y Vías Metabólicas/genética , MicroARNs/clasificación , MicroARNs/metabolismo , Anotación de Secuencia Molecular , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Factores de Transcripción/clasificación , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
J Oleo Sci ; 70(5): 697-702, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33840666

RESUMEN

We examined effects of a major lipotrope, myo-inositol, on the expression of primary glycolytic (glucokinase and phosphofructokinase) and fructolytic enzyme (ketohexokinase [KHK] and aldolase B) genes in the livers of rats fed a control diet, high-sucrose diet, or high-sucrose diet supplemented with 0.5% myo-inositol for 14 d. Supplementation with myo-inositol decreased the hepatic expression of fructolytic enzyme genes, but not that of glycolytic enzyme genes, and the levels of triglycerides, fatty acid synthase, and KHK proteins in high-sucrose diet-induced fatty liver. The study results suggest that myo-inositol represses primary fructlysis, but not glycolysis, in high-sucrose diet-induced fatty liver.


Asunto(s)
Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Sacarosa en la Dieta/efectos adversos , Suplementos Dietéticos , Fructoquinasas/genética , Fructoquinasas/metabolismo , Fructosa-Bifosfato Aldolasa/genética , Fructosa-Bifosfato Aldolasa/metabolismo , Expresión Génica/efectos de los fármacos , Glucoquinasa/genética , Glucoquinasa/metabolismo , Inositol/administración & dosificación , Inositol/farmacología , Hígado/enzimología , Fosfofructoquinasas/genética , Fosfofructoquinasas/metabolismo , Animales , Hígado/metabolismo , Masculino , Ratas Wistar
19.
Int J Mol Sci ; 22(5)2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33670975

RESUMEN

Excessive intake of fructose results in metabolic syndrome (MS) and kidney damage, partly mediated by its metabolism by fructokinase-C or ketohexokinase-C (KHK-C). Osthol has antioxidant properties, is capable of regulating adipogenesis, and inhibits KHK-C activity. Here, we examined the potential protective role of osthol in the development of kidney disease induced by a Western (high-fat/high-sugar) diet. Control rats fed with a high-fat/high-sugar diet were compared with two groups that also received two different doses of osthol (30 mg/kg/d or 40 mg/kg/d body weight BW). A fourth group served as a normal control and received regular chow. At the end of the follow-up, kidney function, metabolic markers, oxidative stress, and lipogenic enzymes were evaluated. The Western diet induced MS (hypertension, hyperglycemia, hypertriglyceridemia, obesity, hyperuricemia), a fall in the glomerular filtration rate, renal tubular damage, and increased oxidative stress in the kidney cortex, with increased expression of lipogenic enzymes and increased kidney KHK expression. Osthol treatment prevented the development of MS and ameliorated kidney damage by inhibiting KHK activity, preventing oxidative stress via nuclear factor erythroid 2-related factor (Nrf2) activation, and reducing renal lipotoxicity. These data suggest that the nutraceutical osthol might be an ancillary therapy to slow the progression of MS and kidney damage induced by a Western diet.


Asunto(s)
Cumarinas/farmacología , Dieta Occidental/efectos adversos , Fructoquinasas/antagonistas & inhibidores , Enfermedades Renales/prevención & control , Síndrome Metabólico/prevención & control , Animales , Cumarinas/uso terapéutico , Dieta de Carga de Carbohidratos/efectos adversos , Dieta Alta en Grasa/efectos adversos , Fructoquinasas/metabolismo , Fructosa/metabolismo , Enfermedades Renales/etiología , Enfermedades Renales/metabolismo , Masculino , Síndrome Metabólico/etiología , Síndrome Metabólico/metabolismo , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Sustancias Protectoras/farmacología , Sustancias Protectoras/uso terapéutico , Ratas , Ratas Wistar
20.
J Cell Physiol ; 236(7): 5080-5097, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33305831

RESUMEN

Naked mole-rats are among the mammalian champions of hypoxia tolerance. They evolved adaptations centered around reducing metabolic rate to overcome the challenges experienced in their underground burrows. In this study, we used next-generation sequencing to investigate one of the factors likely supporting hypoxia tolerance in naked mole-rat brains, posttranscriptional microRNAs (miRNAs). Of the 212 conserved miRNAs identified using small RNA sequencing, 18 displayed significant differential expression during hypoxia. Bioinformatic enrichment revealed that hypoxia-mediated miRNAs were suppressing energy expensive processes including de novo protein translation and cellular proliferation. This suppression occurred alongside the activation of neuroprotective and neuroinflammatory pathways, and the induction of central signal transduction pathways including HIF-1α and NFκB via miR-335, miR-101, and miR-155. MiRNAs also coordinated anaerobic glycolytic fuel sources, where hypoxia-upregulated miR-365 likely suppressed protein levels of ketohexokinase, the enzyme responsible for catalyzing the first committed step of fructose catabolism. This was further supported by a hypoxia-mediated reduction in glucose transporter 5 proteins that import fructose into the cell. Yet, messenger RNA and protein levels of lactate dehydrogenase, which converts pyruvate to lactate in the absence of oxygen, were elevated during hypoxia. Together, this demonstrated the induction of anaerobic glycolysis despite a lack of reliance on fructose as the primary fuel source, suggesting that hypoxic brains are metabolically different than anoxic naked mole-rat brains that were previously found to shift to fructose-based glycolysis. Our findings contribute to the growing body of oxygen-responsive miRNAs "OxymiRs" that facilitate natural miRNA-mediated mechanisms for successful hypoxic exposures.


Asunto(s)
Hipoxia de la Célula/fisiología , Glucólisis/fisiología , Hipoxia Encefálica/metabolismo , MicroARNs/genética , Neuroprotección/genética , Adaptación Fisiológica , Anaerobiosis/fisiología , Animales , Encéfalo , Proliferación Celular/fisiología , Metabolismo Energético/fisiología , Fructoquinasas/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Masculino , Ratas Topo , Biosíntesis de Proteínas/fisiología , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...